Lecture 06 Environmental Science Water Resources
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This lecture may be listened to by clicking the word
lecture. It will take
several seconds to begin.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Water is continually moving around, through, and above the Earth as water vapor, liquid water, and ice. In fact, water is continually changing its form. A model used to illustrate process is called the 'Water Cycle". The Earth is pretty much a "closed system," which means that the Earth neither, as a whole, gains nor loses matter, including water. Although some matter, such as meteors from outer space, are captured by Earth, very little of Earth's substances escape into outer space. This is certainly true about water. This means that the same water that existed on Earth millions of years ago is still here. Thanks to the water cycle, the same water is continually being recycled all around the globe.
You can see how water is distributed by viewing these bar charts. The left-side bar shows where the water on Earth exists; about 97 percent of all water is in the oceans. The middle bar shows the distribution of that three percent of all Earth's water that is freshwater. The majority, about 69 percent, is locked up in glaciers and icecaps, mainly in Greenland and Antarctica. You might be surprised that of the remaining freshwater, almost all of it is below your feet, as ground water. No matter where on Earth you are standing, chances are that, at some depth, the ground below you is saturated with water. Of all the freshwater on Earth, only about 0.3 percent is contained in rivers and lakes—yet rivers and lakes are not only the water we are most familiar with, it is also where most of the water we use in our everyday lives exists.
For a detailed explanation of where Earth's water is, look at the data table below. Notice how of the world's total water supply of about 332.5 million cubic miles of water, over 96 percent is saline. And, of the total freshwater, over 68 percent is locked up in ice and glaciers. Another 30 percent of freshwater is in the ground. Thus, surface-water sources (such as rivers) only constitute about 22,300 cubic miles, which is about 1/700th of one percent of total water, yet rivers are the source of most of the water people use.
Uses of the World's Fresh Water According to Miller, 2006- Environmental Science, pg.238, worldwide, we use 70% of the water each year for irrigation, 20% by industries, and 10% by cities and residences.
Oceans
Oceans cover about 70% of the Earth's surface. The oceans contain roughly 97% of the Earth's water supply. The
oceans of Earth serve many functions, especially affecting the weather and
temperature. They moderate the Earth's temperature by absorbing incoming solar
radiation (stored as heat energy). The always-moving ocean currents distribute
this heat energy around the globe. This heats the land and air during winter and
cools it during summer.
The Oceans are salty due to the fact that as
water flows over and through the land, it
picks up small amounts of mineral salts from the rocks and soil. This
very-slightly salty water flows into the oceans and seas. The water in the
oceans only leaves by evaporating (and the freezing of polar ice), but the salt
remains dissolved in the ocean - it does not evaporate. So the remaining water
gets saltier. The oceans and seas contain roughly 5 x 1016 tons of
salts. One cubic foot of average sea water contains 2.2 pounds of salt. The
oceans are about 3.5% salt (by weight).
Lakes
A lake is a body of water or other liquid of considerable size surrounded entirely by land. A vast majority of lakes on Earth are fresh water, and most lie in the Northern Hemisphere. Lakes have numerous features in addition to lake type, such as drainage basin, inflow, and outflow, nutrient content, dissolved oxygen, pollutants, pH, and sedimentation. The change in level of a lake is controlled by the difference between the sources of inflow and outflow, compared to the total volume of the lake. The significant input sources are precipitation onto the lake; runoff carried by streams and channels from the lake's drainage basin area; groundwater channels and aquifers; and artificial sources from outside the drainage basin area. Output sources are evaporation from the lake; surface and groundwater flows; and any extraction of lake water by humans. As climate conditions and human water requirements vary, these will create fluctuations in the lake level. Lakes can be also categorized on the basis of their richness of nutrients, which typically affects plant growth. Nutrient-poor lakes are said to be oligotrophic and are generally clear, having a low concentration of plant life. Mesotropic lakes have good clarity and an average level of nutrients. Eutrophic lakes are enriched with nutrients, resulting in good plant growth and possible algal blooms. And hypertrophic lakes are bodies of water that have been excessively enriched with nutrients. Lake turnover occurs due to the unusual relationship between water's temperature and its density. Lakes form layers called thermoclines which are layers of drastically varying temperature relative to depth. Fresh water is most dense at about 4 degrees Celsius (39.2 °F) at sea level. When the temperature of the water at the surface of a lake reaches the same temperature as deeper water (such as during the cooler months in temperate climates), the water in the lake can mix, bringing oxygen starved water up from the depths, and bringing oxygen down to decomposing sediments. Deep temperate lakes can maintain a reservoir of cold water year-round which allows some cities to tap that reservoir for deep lake water cooling.
Ice and Snow The vast majority, almost 90 percent, of Earth's ice mass is in Antarctica, while the Greenland ice cap contains 10 percent of the total global ice mass. The ice cap became so large over time because more snow fell than melted. Over the millennia, as the snow got deeper, it compressed and became ice. In many places Greenland’s glaciers on reach to the sea, and contributes to the global water cycle. Climatic factors affect them and during a warmer climate, they can retreat in size at a rate easily measured. Ice is very white, and since white reflects sunlight (and thus, heat), large ice fields can determine weather patterns. Air temperatures can be higher a mile above ice caps than at the surface, and wind patterns, which affect weather systems, can be dramatic around ice-covered landscapes.
Even though the amount of water locked up in glaciers and ice caps is a small percentage of all water on (and in) the Earth, it represents a large percentage of the world's total freshwater. As the data table show, the amount of water locked up in ice and snow is only about 1.7 percent of all water on Earth, but the majority of total freshwater on Earth, about 68.7 percent, is held in ice caps and glaciers.
Rivers
A river is a natural waterway that conveys water derived from precipitation from higher ground to lower ground. Most commonly rivers flow on the surface but there are many examples of underground rivers where the flow is contained within chambers, caves or caverns. In some areas of highly variable rainfall, some rivers carry water only occasionally and may be dry for several years at a time. Water may also be recruited to a river from ground-water sources. Throughout the course of the river, the total volume transported downstream will often be a combination of the free water flow together with a substantial contribution flowing through sub-surface rocks and gravels that underlie the river and its floodplain. For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow. From their source, all rivers flow downhill, typically terminating in the sea or in a lake. In arid areas rivers sometimes end by losing water to evaporation. River flow may also be lost by percolation into dry, porous material such as sand, soil, or into pervious rock. Excessive abstraction of water for use in industry, irrigation etc can also cause a river to dry before reaching a lake or the sea. The mouth, or lower end, of a river is known by hydrologists as its base level. The area drained by a river and its tributaries is called drainage basin or watershed. The term "watershed" is also used to mean a boundary between drainage basins, which is also called a water divide. A river's water is generally confined to a channel, made up of a stream bed between banks. In larger rivers there is also a wider flood-plain shaped by flood-waters overtopping the channel. Flood plains may be very wide in relation to the size of the river channel. This distinction between river channel and flood-plain can be blurred especially in urban areas where the flood-plain of a river channel can become greatly developed by housing and industry. A river flowing in its channel is a source of considerable energy which acts on the river channel to change its shape and form. In mountainous torrential zones this can be seen as erosion channels through hard rocks and the creation of sands and gravels from the destruction of larger rocks. In U shaped glaciated valleys, the subsequent river valley can often easily be identified by the V shaped channel that it has carved. In the middle reaches where the river may flow over flatter land, loops (meanders) may form through eroding of the river banks and deposition on the inside of bends. Sometimes the river will cut off a loop, shortening the channel and forming an oxbow lake. Rivers that carry large amounts of sediment may develop conspicuous deltas at their mouths, if conditions permit. Rivers, whose mouths are in saline tidal waters, may form estuaries. River mouths may also be fjords. Although the following classes are a useful simplified way to visualize rivers, it is important to recognize there are other factors at work.
Youthful River is a river with a steep gradient that has very few tributaries and flows quickly. Its channels erode deeper rather than wider. Mature River is a river with a gradient that is less steep than those of youthful rivers and flows more slowly than youthful rivers. A mature river is fed by many tributaries and has more discharge than a youthful river. Its channels erode wider rather than deeper. (Ex: Mississippi River, Ohio River, Thames River) Old River is a river with a low gradient and low erosive energy. Old rivers are characterized by wide flood plains. (Ex: Tigris River, Euphrates River, Indus River) Surface water use in the United States
The water in the nation's rivers, streams, creeks, lakes, and
reservoirs are vitally important to our everyday life. The main uses of surface
water include drinking-water and other public uses, irrigation uses, and for use
by the thermoelectric-power industry to cool electricity-generating equipment.
The majority of water used for thermoelectric power, public supply, irrigation,
mining, and industrial purposes came from surface-water sources. About 74
percent of the freshwater used in the United States in 2000 came from
surface-water sources. The other 26 percent came from ground water. Surface
water is an important natural resource used for many purposes, especially
irrigation and public supply (supplying people with drinking water and for
everyday uses). Ground Water and AquifersThe main uses of ground water include irrigation uses, drinking-water and other public uses, and for supplying domestic water to people who do not receive public-supply water. The majority of water used for self-supplied domestic and livestock purposes came from ground-water sources. Ground water is an important part of the water cycle. There is a hundred times more water in the ground than is in all the world's rivers and lakes. Most of the void spaces in the rocks below the water table are filled with water. Rocks have different porosity and permeability which means that water does not move around the same way in all rocks. Water underlies the Earth's surface almost everywhere, beneath hills, mountains, plains, and deserts. This water may occur close to the land surface, as in a marsh, or it may lay many hundreds of feet below the surface. Water at very shallow depths might be just a few hours old; at moderate depth, it may be 100 years old; and at great depth or after having flowed long distances from places of entry, water may be thousands of years old. When a water-bearing rock readily transmits water to wells and springs, it is called an aquifer. Wells can be drilled into the aquifers and water can be pumped out. Precipitation eventually adds water (recharge) into the porous rock of the aquifer. Pumping too much water draws down the water in the aquifer and eventually causes a well to yield less and less water and even run dry. Land Subsidence
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||